Внимание! Остерегайтесь подделок - заказывайте в официальном магазине НПЦРИЗ!

Эпигенетические препараты (EPI)


  • 1


Эпигенетика — область генетики, изучающая модификации генной экспрессии, обусловленные наследственными, но потенциально обратимыми изменениями в структуре хроматина и/или метилированием ДНК, без изменения первичной последовательности нуклеотидов. Сейчас выделяют такие основные пути эпигенетической модификации генома как:

  • Метилирование нуклеотидов;
  • Ферментативная модификация гистонов;
  • РНК-интерференция.

Метилирование представляет собой ферментативный процесс присоединения группы —CH3 к нуклеотидам — у млекопитающих это, в основном, цитозин (рис. 7). Стоит отметить, что метилирование цитозина происходит только в составе мотива CpG (цитозин—гуанин). В качестве донора метильной группы выступает S-аденозилметионин; фермент, который участвует в метилировании, называют метилазой или метилтрансферазой (DNMT). Метилирование ДНК — это модификация, отключающая гены. Это и есть та самая «память», которая имеется у дифференцированных клеток и не дает им подняться на вершину «уоддингтоновского ландшафта». Из этого следует, что метилирование тканеспецифично, а также участвует в обеспечении целостности нашего генома, защите ДНК.

Гистоны — это белки, на которые как бы накручивается нить ДНК при ее упаковке в составе хромосом. При этом гистоны сильно влияют на возможность «считать» с ДНК информацию, а модификации гистонов могут приводить как к активации ДНК, так и к подавлению активности определенных генов. Интересным фактом является способность некоторых модификаций гистонов повышать вероятность метилирования близлежащей ДНК. Модификации гистонов происходят быстро и часто; они представляют собой инструмент для тонкой регуляции активности генов.

И наконец, третий эпигенетический «товарищ» — РНК-интерференция, за открытие которой в 2006 году была присуждена очередная Нобелевская премия (рис. 8). Суть действия этого фундаментального механизма регуляции синтеза белка заключается в разрушении мРНК, и работе генов как бы «вхолостую». Эндрю Файр и Крейг Мэллоу открыли новые горизонты для изучения функций отдельных генов и белков, влиянии мутаций, лучшего понимания механизмов работы клеточных систем, а также использования данного механизма в лечении наследственных заболеваний и рака [19]. Некодирующие РНК [19–21], [28] проявили себя и в процессе, известном как инактивация Х-хромосомы. Удивительнейшим образом в этом процессе задействована некодирующая РНК Xist, «ползающая» по X-хромосоме и способствующая ее «выключению»: см. «Загадочное путешествие некодирующей РНК Xist по X-хромосоме» [29]. Происходит это на ранних стадиях эмбрионального развития; при этом в разных клетках инактивируются разные Х-хромосомы (так объясняется, например, черепаховая окраска у кошек). Иногда репрессия «неправильной» Х-хромосомы ведет к сложным психоневрологическим заболеваниям, — например синдрому Ретта.

Все эти виды РНК интересны еще и тем, что они присутствуют в зрелой яйцеклетке, то есть, способны влиять на развитие организма и наследственность. Несомненна роль РНК-интерференции в защите клетки от вирусов и мобильных элементов генома.

Итак, в свете того, что многие лаборатории мира занимаются поиском эпигенетических маркеров при разных болезнях у различных организмов (иначе говоря, устанавливают эпигеном), можно считать эпигенетику прочно вошедшей в мир биологических наук. Более того: данная область знания повторяет путь науки генетики в XX веке, а значит, скоро нас ждут новые фундаментальные знания о работе клетки и организма в целом.

Эпигенетика — довольно молодое направление современной науки, и пока она не так широко известна, как ее «родная сестра» генетика. В переводе с греческого предлог «эпи-" означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых структура ДНК остается прежней. Можно представить, будто некий «командир» в ответ на внешние стимулы, такие как питание, эмоциональные стрессы, физические нагрузки, отдает приказы нашим генам усилить или, наоборот, ослабить их активность.

Пожалуй, самое емкое и в то же время точное определение эпигенетики принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару: «Генетика предполагает, а эпигенетика располагает».

Гены не приговор!

Изучение эпигенетических механизмов помогло понять важную истину: очень многое в жизни зависит от нас самих. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. Этот факт позволяет рассчитывать на принципиально новые методы борьбы с распространенными болезнями, основанные на устранении тех эпигенетических модификаций, которые возникли у человека под воздействием неблагоприятных факторов. Применение подходов, направленных на корректировку эпигенома, открывает перед нами большие перспективы.

Уникальность линейки пищевых добавок EPI состоит в синергетичности и силе их действия на организм, посредством рецептурной подготовки базовых природных компонентов собранных или выращенных в чистых зонах (местах). Соблюдены определенные условия сбора, подготовки и сушки а так же технологии приготовления, которые отличаются от стандартных промышленных технологий (ВОЗМОЖНОСТЬ ВОЗДЕЙСТВИЯ НА МИКРОМОЛЕКУЛЯРНОМ ЭПИГЕНЕТИЧЕСКОМ УРОВНЕ - отсюда и исходит название линейки EPI)

Пищевые добавки на основе смесей EPI будут высокоактивными, во много раз потенцированными нутриентами (очень высокая биологическая доступность на всех уровнях воздействия).

Купить синергоиды